The realization space is [1 1 x1^2 - x1 + 1 0 0 1 x1 - 1 x1^2 - x1 + 1 0 1 x1 - 1] [1 0 x1^2 1 0 1 0 x1^2 x1 - 1 x1 x1^2 - x1] [0 0 0 0 1 1 x1^2 x1^3 - x1^2 + x1 x1 x1 x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (2*x1^17 - 10*x1^16 + 23*x1^15 - 32*x1^14 + 29*x1^13 - 17*x1^12 + 6*x1^11 - x1^10) avoiding the zero loci of the polynomials RingElem[x1 - 1, x1, x1^3 - 3*x1^2 + 2*x1 - 1, x1^3 - 2*x1^2 + x1 - 1, x1 - 2, x1^2 - x1 + 1, x1 + 1, 2*x1^2 - x1 + 1, x1^2 + 1]